12 research outputs found

    Multiple System Modelling and Analysis of Physiological and Brain Activity and Performance at Rest and During Exercise

    Get PDF
    One of the current interests of exercise physiologists is to understand the nature and control of fatigue related to physical activity to optimise athletic performance. Therefore, this research focuses on the mathematical modelling and analysis of the energy system pathways and the system control mechanisms to investigate the various human metabolic processes involved both at rest and during exercise. The first case study showed that the PCr utilisation was the highest energy contributor during sprint running, and the rate of ATP production for each anaerobic subsystem was similar for each athlete. The second study showed that the energy expenditure derived from the aerobic and anaerobic processes for different types of pacing were significantly different. The third study demonstrated the presence of the control mechanisms, and their characteristics as well as complexity differed significantly for any physiological organ system. The fourth study showed that the control mechanisms manifest themselves in specific ranges of frequency bands, and these influence athletic performance. The final study demonstrated a significant difference in both reaction time and accuracy of the responses to visual cues between the control and exercise-involved cognitive trials. Moreover, the difference in the EEG power ratio at specific regions of the brain; the difference in the ERP components’ amplitudes and latencies; and the difference in entropy of the EEG signals represented the physiological factors in explaining the poor cognitive performance of the participants following an exhaustive exercise bout. Therefore, by using mathematical modelling and analysis of the energy system pathways and the system control mechanisms responsible for homeostasis, this research has expanded the knowledge how performance is regulated during physical activity and together with the support of the existing biological control theories to explain the development of fatigue during physical activity

    Management of metabolic resources for a 20-km cycling time-trial using different types of pacing

    Get PDF
    Pacing is crucial for improving human performance in time-trial physical exercise. This study examined the effect of different types of pacing (self pace, variable pace and even pace) on the energy expended from the aerobic system and anaerobic system for a 20-km time-trial cycling exercise. In addition, the degree of homeostatic disturbance caused by each type of pacing was analysed to find out the effect of pacing on the human body. Furthermore, the relationship between the Ratings of Perceived Exertion (RPE) and blood lactate concentration was investigated, and associated to these types of pacing. Here, in this study, we showed that even pace was aerobic energy system dependent, and variable pace was anaerobic energy system dependent. Also, the Hazard Score index demonstrated that the variable pace time-trial caused the greatest homeostatic disturbance and there was a positive relationship between RPE and blood lactate concentration

    Multiple system modelling and analysis of physiological and brain activity and performance at rest and during exercise

    Get PDF
    One of the current interests of exercise physiologists is to understand the nature and control of fatigue related to physical activity to optimise athletic performance. Therefore, this research focuses on the mathematical modelling and analysis of the energy system pathways and the system control mechanisms to investigate the various human metabolic processes involved both at rest and during exercise. The first case study showed that the PCr utilisation was the highest energy contributor during sprint running, and the rate of ATP production for each anaerobic subsystem was similar for each athlete. The second study showed that the energy expenditure derived from the aerobic and anaerobic processes for different types of pacing were significantly different. The third study demonstrated the presence of the control mechanisms, and their characteristics as well as complexity differed significantly for any physiological organ system. The fourth study showed that the control mechanisms manifest themselves in specific ranges of frequency bands, and these influence athletic performance. The final study demonstrated a significant difference in both reaction time and accuracy of the responses to visual cues between the control and exercise-involved cognitive trials. Moreover, the difference in the EEG power ratio at specific regions of the brain; the difference in the ERP components’ amplitudes and latencies; and the difference in entropy of the EEG signals represented the physiological factors in explaining the poor cognitive performance of the participants following an exhaustive exercise bout. Therefore, by using mathematical modelling and analysis of the energy system pathways and the system control mechanisms responsible for homeostasis, this research has expanded the knowledge how performance is regulated during physical activity and together with the support of the existing biological control theories to explain the development of fatigue during physical activity.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Investigation of Complexity and regulatory role of physiological activities during a pacing exercise

    Get PDF
    Existing physiological control fatigue models propose that there may be a regulator in the central nervous system which modulates our daily physical activity. Within limits, this regulator ensures physical activity is completed without physiological system failure through interactive communications between the peripheral systems and the central systems. The ability of the central nervous system to regulate exercise is vital to optimise sport performance when severe intensity exercise might be required for prolonged or frequent periods. Based on mathematical models, this investigation explores the complex relationship between some of the mechanisms controlling physical activity and behaviour. In order to analyse the system control mechanisms, heart rate, volume of oxygen consumption and power output were measured for ten well-trained male cyclists. Using power spectrum analysis, fractal analysis, recurrence quantification techniques and continuous wavelet transforms, we show that the system control mechanisms regulating physiological systems, have distinct complexity. Moreover, the potential central controller uses specific frequency bands simultaneously to control and communicate with the various physiological systems. We show that pacing trials are regulated by different physiological systems

    BRAIN Journal - Brain signal analysis using EEG and Entropy to study the effect of physical and mental tasks on cognitive performance

    No full text
    ABSTRACT Some theoretical control models posit that the fatigue which is developed during physical activity is not always peripheral and it is the brain which causes this feeling of fatigue. This fatigue develops due to a decrease of metabolic resources to and from the brain that modulates physical performance. Therefore, this research was conducted to find out if there was finite level of metabolic energy resources in the brain, by performing both mental and physical activities to exhaustion. It was found that there was an overflow of information during the exercise-involved experiment. The circular relationship between fatigue, cognitive performance and arousal state insinuates that one should apply more effort to maintain performance levels which would require more energy resources that eventually accelerates the development of fatigue. Thus, there appeared to be a limited amount of energy resources in the brain as shown by the cognitive performance of the participants

    Temporal Patterns: Smart-type Reasoning and Applications

    Get PDF
    Allen’s interval algebra is a calculus for temporal reasoning that was introduced in 1983. Reasoning with quali- tative time in Allen’s full interval algebra is nondeterministic polynomial time (NP) complete. Research since 1995 identified maximal tractable subclasses of this algebra via exhaustive computer search and also other ad-hoc methods. In 2003, the full classification of complexity for satisfiability problems over con- straints in Allen’s interval algebra was established algebraically. Recent research proposed scheduling based on the Fishburn- Shepp correlation inequality for posets. We describe here three potential temporal-related application areas as candidates for scheduling using this inequalityN/

    BRAIN Journal - Brain signal analysis using EEG and Entropy to study the effect of physical and mental tasks on cognitive performance

    No full text
    <i>Abstract</i><div><br></div><div><div>Some theoretical control models posit that the fatigue which is developed during physical activity is not always peripheral and it is the brain which causes this feeling of fatigue. This fatigue develops due to a decrease of metabolic resources to and from the brain that modulates physical performance. Therefore, this research was conducted to find out if there was finite level of metabolic energy resources in the brain, by performing both mental and physical activities to exhaustion. It was found that there was an overflow of information during the exercise-involved experiment. The circular relationship between fatigue, cognitive performance and arousal state insinuates that one should apply more effort to maintain performance levels which would require more energy resources that eventually accelerates the development of fatigue. Thus, there appeared to be a limited amount of energy resources in the brain as shown by the cognitive performance of the participants</div></div><div><br></div><div><b>Find more at:</b></div><div><b>https://www.edusoft.ro/brain/index.php/brain/article/view/458</b><br></div
    corecore